Part Number Hot Search : 
S1503 60001 LBS11902 ECWF2225 SGM9111 D213ED ADAM6060 29LV033
Product Description
Full Text Search
 

To Download VRF150MP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  vrf150 VRF150MP 50v, 150w, 150mhz the vrf150 is a gold-metallized silicon n-channel rf power transistor de- signed for broadband commercial and military applic ations requiring high power and gain without compromising reliability, ruggedness, or inter-modulation distortion. features ? improved ruggedness v (br)dss = 170v ? 150w with 11db typical gain @ 150mhz, 50v ? 150w with 18db typical gain @ 30mhz, 50v ? excellent stability & low imd ? common source coniguration ? available in matched pairs ? 70:1 load vswr capability at speciied operating conditions? nitride passivated ? refractory gold metallization ? high voltage replacement for mrf150 ? rohs compliant symbol parameter vrf150(mp) unit v dss drain-source voltage 170 v i d continuous drain current @ t c = 25c 16 a v gs gate-source voltage 40 v p d total device dissipation @ t c = 25c 300 w t stg storage temperature range -65 to 150 c t j operating junction temperature 200 rf power vertical mosfet maximum ratings all ratings: t c =25 c unless otherwise speciied static electrical characteristics symbol parameter min typ max unit v (br)dss drain-source breakdown voltage (v gs = 0v, i d = 100ma) 170 180 v v ds(on) on state drain voltage (i d(on) = 10a, v gs = 10v) 2.0 3.0 i dss zero gate voltage drain current (v ds = 100v, v gs = 0v) 1.0 ma i gss gate-source leakage current (v gs = 20v, v ds = 0v) 1.0 a g fs forward transconductance (v ds = 10v, i d = 5a) 4.5 mhos v gs(th) gate threshold voltage (v ds = 10v, i d = 100ma) 2.9 3.6 4.4 v microsemi website - http://www.microsemi.com 050-4936 rev g 12-2013 thermal characteristics symbol characteristic min typ max unit r jc junction to case thermal resistance 0.60 c/w caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. m174 downloaded from: http:///
vrf150(mp) dynamic characteristics symbol parameter test conditions min typ max unit c iss input capacitance v gs = 0v 420 pf c oss output capacitance v ds = 50v 210 c rss reverse transfer capacitance f = 1mhz 35 class a characteristics symbol test conditions min typ max unit g ps v dd = 50v, i dq = 3a, p out = 150w pep , f1 = 30mhz, f2 = 30.001mhz 20 db imd (d3) -50 imd (d9-d13) -75 functional characteristics symbol parameter min typ max unit g ps f 1 = 30mhz, f 2 = 30.001mhz, v dd = 50v, i dq = 250ma, p out = 150w pep 1 18 db g ps f = 150mhz, v dd = 50v, i dq = 250ma, p out = 150w 11 d f 1 = 30mhz, f 2 = 30.001mhz, v dd = 50v, i dq = 250ma, p out = 150w pep 1 50 % imd (d3) f 1 = 30mhz, f 2 = 30.001mhz, v dd = 50v, i dq = 250ma, p out = 150w pep 1 -32 dbc f 1 = 30mhz, v dd = 50v, i dq = 250ma, p out = 150w cw 70:1 vswr - all phase angles, 0.2msec x 20% duty factor no degradation in output power 1. to mil-std-1311 version a, test method 2204b, two tone, reference each tone microsemi reserves the right to change, without notice, the speciications and information contained herein. 050-4936 rev g 12-2013 1 1 10 20 1 10 100 250 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 0 5 10 15 20 25 30 35 0 4 8 12 16 20 24 28 32 10 100 1,000 0 10 20 30 40 50 c iss v ds(on ) , drain-to-source voltage (v) figure 1, output characteristics i d , drain current (a) i d , drain current (a) t j = 125c v ds , drain-to-source voltage (v) figure 3, capacitance vs drain-to-source voltage c, capacitance (pf) v ds , drain-to-source voltage (v) figure 4, forward safe operating area i d , drain current (v) 4v 5v 6v 7v 8v 9v 10v 14v v gs , gate-to-source voltage (v) figure 2, transfer characteristics 250s pulse test<0.5 % duty cycle t j = -55c t j = 25c c oss c rss r ds(on) dc line t j = 125c t c = 75c typical performance curves pdmax i dmax downloaded from: http:///
?50 ?45 ?40 ?35 ?30 ?25 ?20 0 50 100 150 200 250 vrf150(mp) 050-4936 rev g 12-2013 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 10 -5 10 -4 10 -3 10 -2 10 1.0 0.5 single pulse 0.1 0.3 0.7 0.05 d = 0.9 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note : t 1 = pulse duration z jc , thermal impedance (c/w) rectangular pulse duration (seconds) figure 5. maximum effective transient thermal impedance junction-to-case vs pulse duration 0 50 100 150 200 250 300 0 5 10 15 20 p out , output power (watts pep) figure 6. imd versus p out imd, intermodulation distortion (db) output power (w pep ) p out , input power (watts pep) figure 7. p out versus p in typical performance curves vdd=50v, idq = 250ma, freq=150mhz vdd=50v, idq = 250ma, freq=150mhz im3 im5 vdd=40v vdd=50v downloaded from: http:///
vrf150(mp) 050-4936 rev g 12-2013 rfc1 + 50vdc + + c9 c8 c7 c3 c2 l3 l2 c6 r1 r2 r3 c4 c5 l1 c1 bias0-12v c1 0c 11 l4 rf input rf output c1, c2, c8 -- arco 463 or equivalentc3 -- 25pf, unelco c4 -- 0.1uf, ceramic c5 -- 1.0 uf, 15 wv tantalum c6 -- 250pf, unelco j101 c7-- 25pf, unelco j101 c9 -- arco 262 or equivalent c10 -- 0.05uf, ceramic c11 -- 15uf, 60wv electrolytic dut + 50vdc + c8 c4 c6 c7 l2 c3 r2 r1 c5 l1 c2 c1 bias0-12v c9 c10 rf input rf output c1 -- 470 pf dipped micac2, c5, c6 - c9 -- 0.1uf smt c3 -- 200pf atc 700c c4 -- 15pf, atc 700c c10 -- 10uf, 100v electrolytic l1 - vk200-4bl2 -- 2 ferrite beads, 2.0 uh r1, r2 -- 51 7 , 1 w carbon r3 -- 3.3 7 , 1 w carbon t1 -- 9:1 transformert2 -- 1:9 transformer dut t2 r3 30 mhz test circuit 150 mhz test circuit downloaded from: http:///
vrf150(mp) 050-4936 rev g 12-2013 a u m m q r b 1 4 3 2 d k e seating plane c j h pin 1 - source pin 2 - gate pin 3 - source pin 4 - drain .5 soe package outline all dimensions are .005 dim inches millimeters min max min max a 0.096 0.990 24.39 25.14 b 0.465 0.510 11.82 12.95 c 0.229 0.275 5.82 6.98 d 0.216 0.235 5.49 5.96 e 0.084 0.110 2.14 2.79 h 0.144 0.178 3.66 4.52 j 0.003 0.007 0.08 0.17 k 0.435 11.0 m 45 nom 45 nom q 0.115 0.130 2.93 3.30 r 0.246 0.255 6.25 6.47 u 0.720 0.730 18.29 18.54 adding mp at the end of p/n speciies a matched pair where v gs(th) is matched between the two parts. v th values are marked on the devices per the following table. code vth range code 2 vth range a 2.900 - 2.975 m 3.650 - 3.725 b 2.975 - 3.050 n 3.725 - 3.800 c 3.050 - 3.125 p 3.800 - 3.875 d 3.125 - 3.200 r 3.875 - 3.950 e 3.200 - 3.275 s 3.950 - 4.025 f 3.275 - 3.350 t 4.025 - 4.100 g 3.350 - 3.425 w 4.100 - 4.175 h 3.425 - 3.500 x 4.175 - 4.250 j 3.500 - 3.575 y 4.250 - 4.325 k 3.575 - 3.650 z 4.325 - 4.400 v th values are based on microsemi measurements at datasheet conditions with an accuracy of 1.0%. downloaded from: http:///
the information contained in the document (unless it is publicly available on the web without access restrictions) is proprietary and confiden- tial information of microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of microsemi. if the recipient of this document has entered into a disclosure agreement with microsemi, then the terms of such agreement will also apply . this document and the information contained herein may not be modiied, by any person other than authorized personnel of microsemi. no license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. any license under such intellectual property rights must be approved by microsemi in writing signed by an oficer of microsemi. microsemi reserves the right to change the coniguration, functionality and performance of its produc ts at anytime without any notice. this product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. microsemi assumes no liability whatsoever, and microsemi disclaims any express or implied warranty, relating to sale and/or use of microsemi products including li- ability or warranties relating to itness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. any performance speciications believed to be reliable but are not veriied and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers inal application. user or customer shall no t rely on any data and performance speciications or parameters provided by microsemi. it is the customers and users responsibility to independently determine suitability of any microsemi product and to test and verify the same. the information contained herein is provided as is, where is and with all faults, and the entire risk associated with such information is entirely with the user. microsemi speciically disclaims any liability of any kind inc luding for consequential, incidental and punitive damages as well as lost proit. the product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp vrf150(mp) 050-4936 rev g 12-2013 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of VRF150MP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X